Damage identification in concrete using multiscale computational modeling and convolutional neural networks
نویسندگان
چکیده
Concrete is a composite material with heterogeneities across multiple length scales. Degradation of concrete due to external loadings starts diffuse microcracking, followed by damage localization that eventually leads structural failure. Identification at an early stage degradation reduces the costs associated maintenance structure. Weak changes can be detected using ultrasonic waves (so-called Coda waves). In this contribution, virtual testing environment for assessment coda presented. The test combines multiscale computational modeling damage, wave propagation, and supervised learning. At scale mortar material, microcrack growth modelled combination continuum micromechanics linear elastic fracture mechanics. model incorporated into reduced-order Lippmann-Schwinger based mesomodel concrete. Synthetic specimens various levels are generated subsequently these subjected propagation analysis rotated staggered-grid-finite-difference scheme. A convolutional neural network (CNN) learning framework further employed classify given signals.
منابع مشابه
Multiscale Facial Expression Recognition Using Convolutional Neural Networks
Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization procedures. We propose a datadriven face analysis approach that is not only capable of extracting features relevant to a given face analysis task, but is also robust with regard to face location ch...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Computational Optimization of Convolutional Neural Networks using Separated Filters Architecture
This paper considers a convolutional neural network transformation that reduces computation complexity and thus speedups neural network processing. Usage of convolutional neural networks (CNN) is the standard approach to image recognition despite the fact they can be too computationally demanding, for example for recognition on mobile platforms or in embedded systems. In this paper we propose C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings in applied mathematics & mechanics
سال: 2021
ISSN: ['1617-7061']
DOI: https://doi.org/10.1002/pamm.202100249